C+ Socket Classes

Version: 27Jan94 1.6

Gnanasekaran Swaminathan

Copyright © 1992,1993,1994 Gnanasekaran Swaminathan

This is Version: 27Jan94 1.6 of the C++ family of socket classes.

Permission is granted to make and distribute verbatim copies of this document provided the copy-

right notice and this permission notice are preserved on all copies.

Socket++ Library Copyright Notice 1

Socket++ Library Copyright Notice

Copyright (C) 1992,1993,1994 Gnanasekaran Swaminathan

Permission is granted to use at your own risk and distribute this software in source and binary
forms provided the above copyright notice and this paragraph are preserved on all copies. This

software is provided "as is" with no express or implied warranty.

Acknowledgments 2

Acknowledgments

Gordon Joly <G.Joly@cs.ucl.ac.uk> for reporting bugs in pipestream class implementation and
providing an ftp site for the socket++ library at cs.ucl.ac.uk:"ftp/coside/gnu/socket++-1.x.tar.gz He

also knows how to make the socket++ library a shared library.
Jim Anderson for reporting a bug in sockinet.C
Carl Gay <cgay@skinner.cs.uoregon.edu> for reporting a bug and a fix in sockinet.C

Oliver Imbusch <flabes@parystec.de> for reporting a bug in Makefile.in and suggesting several
enhancements for sockbuf class.

Dierk Wendt <wendt@lambda.hella.de> for reporting errors in the socket++ documentation.

Per Bothner <bothner@cygnus.com> for configure, config.sub, config.shared and move-if-change
files that are used to generate Makefile. These files are taken from his libg++-2.4 and hence, these
files are governed by the Copyright Notice found in the file LICENCE in libg++.

Chapter 1: Overview of Socket++ Library 3

1 Overview of Socket++ Library

Socket++ library defines a family of C++ classes that can be used more effectively than directly
calling the underlying low-level system functions. One distinct advantage of the socket++ is that it
has the same interface as that of the iostream so that the users can perform type-safe input output.
See your local I0Stream library documentation for more information on iostreams.

streambuf counterpart of the socket++ is sockbuf. sockbuf is an endpoint for communication
with yet another sockbuf or simply a socket descriptor. sockbuf has also methods that act as
interfaces for most of the commonly used system calls that involve sockets. See Chapter 2 [sockbuf

Class], page 4, for more information on the socket buffer class.

For each communication domain, we derive a new class from sockbuf that has some additional
methods that are specific to that domain. At present, only unix and inet domains are supported.
sockunixbuf class and sockinetbuf class define the unix and inet domain of sockets respectively.
See Chapter 6 [sockunixbuf Class], page 21, for unix sockets and See Chapter 4 [sockinetbuf Class],
page 14, for inet sockets.

We also have domain specific socket address classes that are derived from a common base class
called sockAddr. sockunixaddr class is used for unix domain addresses and sockinetaddr class is
used for inet domain addresses. For more information on address classes see Chapter 3 [sockAddr
Class|, page 13, Chapter 7 [sockunixaddr Class], page 25, and Chapter 5 [sockinetaddr Class],
page 19.

Note: sockAddr is not spelled sockaddr in order to prevent name clash with the struct
sockaddr declared in ‘<sys/socket.h>’.

We noted earlier that socket++ provides the same interface as the iostream library. For ex-
ample, in the internet domain, we have isockinet, osockinet, and iosockinet classes that are
counterparts to istream, ostream, and iostream classes of [OStream library. For more details on
iosockstream classes see See Chapter 8 [sockstream Classes|, page 26.

The services of pipe (), socketpair(), and popen() system calls are provided by the pipestream
class. See Chapter 9 [pipestream Classes], page 33.

Chapter 2: sockbuf Class

2 sockbuf Class

sockbuf class is derived from streambuf class of the iostream library. You can simultaneously

read and write into a sockbuf just like you can listen and talk through a telephone. To accomplish

the above goal, we maintain two independent buffers for reading and writing.

2.1 Constructors

sockbuf constructors sets up an endpoint for communication. A sockbuf object so created can

be read from and written to in linebuffered mode. To change mode, refer to streambuf class in

your [OStream library.

Note: If you are using AT&T 10Stream library, then the linebuffered mode is perma-
nently turned off. Thus, you need to explicitly flush a socket stream. You can flush a
socket stream buffer in one of the following four ways:

//
os
os
os
os

sockbuf objects

— s and so are sockbuf objects

(o}
<<
<<
<<
<<

are

is a socket ostream

"this
"this
"this
"this

is
is
is
is

a

a
a
a

test" << endl;
test\n" << flush;
test\n"; os.flush ();
test\n"; os->sync (O);

created as follows where

— sd is an integer which is a socket descriptor

— af and proto are integers which denote domain number and protocol number respectively

— ty is a sockbuf::type and must be one of sockbuf::sock_stream, sockbuf::sock_dgram,

sockbuf: :sock_raw, sockbuf: :sock_rdm, and sockbuf::sock_seqpacket

sockbuf s(sd);
sockbuf s;

Set socket descriptor of s to sd (defaults to -1). sockbuf destructor will close sd.

sockbuf s(af, ty, proto);

Set socket descriptor of s to ::socket(af, int(ty), proto);

Chapter 2: sockbuf Class 5

sockbuf so(s);

Set socket descriptor of so to the socket descriptor of s.
s.open(ty, proto)

does nothing and returns simply O, the null pointer to sockbuf.
s.is_open()

returns a non-zero number if the socket descriptor is open else return 0.

S = 80; return a reference s after assigning s with so.

2.2 Destructor

sockbuf : : “sockbuf () flushes output and closes its socket if no other sockbuf is referencing it
and S_DELETE_DONT_CLOSE flag is not set. It also deletes its read and write buffers.

In what follows,

— 8 is a sockbuf object

— howis of type sockbuf : : shuthow and must be one of sockbuf: :shut_read, sockbuf: :shut_write,

and sockbuf::shut_readwrite

sockbuf: : “sockbuf ()

flushes output and closes its socket if no other sockbuf object is referencing it before
deleting its read and write buffers. If the S_DELETE_DONT_CLOSE flag is set, then
the socket is not closed.

s.close()

closes the socket even if it is referenced by other sockbuf objects and _S_DELETE_DONT_CLOSE
flag is set.

s.shutdown (how)

shuts down read if how is sockbuf : : shut_read, shuts down write if howis sockbuf: : shut_write,

and shuts down both read and write if how is sockbuf: :shut_readwrite.

2.3 Reading and Writing

sockbuf class offers several ways to read and write and tailors the behavior of several virtual

functions of streambuf for socket communication.

Chapter 2: sockbuf Class 6

In case of error, sockbuf: :error(const char#) is called.

In what follows,

— 8 is a sockbuf object

— buf is buffer of type char*

— bufsz is an integer and is less than sizeof (buf)
— msgf is an integer and denotes the message flag
— sais of type sockAddr

— msgh is a pointer to struct msghdr

— wp is an integer and denotes time in seconds

— cis a char

.is_open()

[©2]

returns a non-zero number if the socket descriptor is open else return 0.
s.is_eof ()

returns a non-zero number if the socket has seen EOF while reading else return 0.
s.write(buf, bufsz)

returns an int which must be equal to bufsz if bufsz chars in the buf are written
successfully. It returns 0 if there is nothing to write or if, in case of timeouts, the
socket is not ready for write Section 2.6 [Timeouts], page 11.

s.send(buf, bufsz, msgf)

same as sockbuf::write described above but allows the user to control the trans-
mission of messages using the message flag msgf. If msgf is sockbuf: :msg_oob and
the socket type of s is sockbuf::sock_stream, s sends the message in out-of-band
mode. If msgf is sockbuf::msg_dontroute, s sends the outgoing packets without
routing. If msgf is 0, which is the default case, sockbuf::send behaves exactly like
sockbuf: :write.

s.sendto(sa, buf, bufsz, msgf)
same as sockbuf::send but works on unconnected sockets. sa specifies the to address
for the message.

s.sendmsg(msgh, msgf)
same as sockbuf: :send but sends a struct msghdr object instead.

s.sys_write(buf, bufsz)

calls sockbuf: :write and returns the result. Unlike sockbuf: :write sockbuf::sys_write

is declared as a virtual function.

Chapter 2: sockbuf Class 7

s.read(buf, bufsz)

returns an int which is the number of chars read into the buf. In case of EOF, return
EQF. Here, bufsz indicates the size of the buf. In case of timeouts, return 0 Section 2.6
[Timeouts], page 11.

s.recv(buf, bufsz, msgf)
same as sockbuf::read described above but allows the user to receive out-of-band
data if msgf is sockbuf: :msg_oob or to preview the data waiting to be read if msgf is
sockbuf: :msg_peek. If msgf is 0, which is the default case, sockbuf: :recv behaves
exactly like sockbuf: :read.

s.recvfrom(sa, buf, bufsz, msgf)
same as sockbuf::recv but works on unconnected sockets. sa specifies the from
address for the message.

s.recvmsg(msgh, msgf)
same as sockbuf: :recv but reads a struct msghdr object instead.

s.sys_read(buf, bufsz)
calls sockbuf: :read and returns the result. Unlike sockbuf: :read sockbuf::sys_read
is declared as a virtual function.

s.is_readready(wp_sec, wp_usec)
returns a non-zero int if s has data waiting to be read from the communication channel.
If wp_sec >= 0, it waits for wp_sec 1076 + wp_usec microseconds before returning 0 in

case there are no data waiting to be read. If wp_sec < 0, then it waits until a datum
arrives at the communication channel. wp_usec defaults to 0.

Please Note: The data waiting in sockbuf’s own buffer is different from
the data waiting in the communication channel.

s.is_writeready(wp_sec, wp_usec)

returns a non-zero int if data can be written onto the communication channel of s.
If wp_sec >= 0, it waits for wp_sec 1076 + wp_usec microseconds before returning 0
in case no data can be written. If wp_sec < 0, then it waits until the communication
channel is ready to accept data. wp_usec defaults to 0.

Please Note: The buffer of the sockbuf class is different from the buffer of
the communication channel buffer.

s.is_exceptionpending(wp_sec, wp_usec)

returns non-zero int if s has any exception events pending. If wp_sec >= 0, it waits
for wp_sec 1076 + wp_usec microseconds before returning 0 in case s does not have
any exception events pending. If wp_sec < 0, then it waits until an expception event
occurs. wp_usec defaults to 0.

Please Note: The exceptions that sockbuf::is_exceptionpending is
looking for are different from the C++ exceptions.

Chapter 2: sockbuf Class 8

s.flush_output()

flushes the output buffer and returns the number of chars flushed. In case of error,
return EOF. sockbuf::flush_output is a protected member function and it is not

available for general public.
s.doallocate()

allocates free store for read and write buffers of s and returns 1 if allocation is done
and returns 0 if there is no need. sockbuf::doallocateis a protected virtual member
function and it is not available for general public.

s.underflow()

returns the unread char in the buffer as an unsigned char if there is any. Else re-
turns EQF if s cannot allocate space for the buffers, cannot read or peer is closed.
sockbuf: :underflowis a protected virtual member function and it is not available for
general public.

s.overflow(c)

if c==EOF, call and return the result of flush_output(), else if c==’\n’ and s is
linebuffered, call flush_output() and return ¢ unless flush_output() returns EOF,
in which case return EOF. In any other case, insert char c into the buffer and return ¢
as an unsigned char. sockbuf::overflow is a protected member virtual function and
it is not available for general public.

Node: linebuffered mode does not work with AT&T 10Stream library. Use
explicit flushing to flush sockbuf.

s.sync() calls flush_output() and returns the result. Useful if the user needs to flush the

output without writing newline char into the write buffer.
s.xsputn(buf, bufsz)

write bufsz chars into the buffer and returns the number of chars successfully written.
Output is flushed if any char in buf [0. .bufsz-1] is >\n’.

s.recvtimeout (wp)
sets the recv timeout to wp seconds. If wp is -1, it is a block and if wp is 0, it is a poll.

It affects all read functions. If the socket is not read ready within wp seconds, the read
call will return 0. It also affects sockbuf: :underflow. sockbuf: :underflow will not
set the _S_EOF_SEEN flag if it is returning EOF because of timeout.

sockbuf: :recvtimeout returns the old recv timeout value.
s.sendtimeout (wp)
sets the send timeout to wp seconds. If wp is -1, it is a block and if wp is 0, it is a poll.

It affects all write functions. If the socket is not write ready within wp seconds, the
write call will return 0.

sockbuf: :sendtimeout returns the old send timeout value.

Chapter 2: sockbuf Class 9

2.4 Establishing connections

A name must be bound to a sockbuf if processes want to refer to it and use it for communication.
Names must be unique. A unix name is a 3-tuple, <protocol, local path, peer path>. An inet name
is a b-tuple, <protocol, local addr, local port, peer addr, peer port>. sockbuf::bind is used to
specify the local half of the name—<local path> for unix and <local addr, local port> for inet.
sockbuf: :connect and sockbuf::accept are used to specify the peer half of the name—<peer

path> for unix and <peer addr, peer port> for inet.
In what follows,

— s and so are sockbuf objects
— sais a sockAddr object

— nc is an integer denoting the number of connections to allow

s.bind(sa)
binds sockAddr sa as the local half of the name for s.
s.connect(sa)

sockbuf : :connect uses sa to provide the peer half of the name for s and to establish
the connection itself. sockbuf::connect also provides the local half of the name
automatically and hence, the user should not use sockbuf::bind to bind any local
half of the name.

s.listen(nc)

makes s ready to accept connections. nc specifies the maximum number of outstanding
connections that may be queued and must be at least 1 and less than or equal to
sockbuf : : somaxconn which is usually 5 on most systems.

sockbuf so = s.accept(sa)

sockbuf so = s.accept()

accepts connections and returns the peer address in sa. s must be a listening sockbuf.
See sockbuf::listen above.

2.5 Getting and Setting Socket Options

Socket options are used to control a socket communication. New options can be set and old
value of the options can be retrived at the protocol level or at the socket level by using setopt and
getopt member functions. In addition, you can also use special member functions to get and set
specific options.

Chapter 2: sockbuf Class 10

In what follows,

— 8 is a sockbuf object
— opval is an integer and denotes the option value
— op is of type sockbuf: :option and must be one of
e sockbuf::so_error used to retrieve and clear error status
e sockbuf::so_type used to retrieve type of the socket
e sockbuf::so_debug is used to specify recording of debugging information
e sockbuf::so_reuseaddr is used to specify the reuse of local address
e sockbuf::so_keepalive is used to specify whether to keep connections alive or not
e sockbuf::so_dontroute is used to specify whether to route messages or not

e sockbuf::so_broadcast is used to specify whether to broadcast sockbuf: :sock_dgram
messages or not

e sockbuf::so_oobinlineis used to specify whether to inline out-of-band data or not.
e sockbuf::so_linger is used to specify for how long to linger before shutting down

e sockbuf::so_sndbuf is used to retrieve and to set the size of the send buffer (communi-

cation channel buffer not sockbuf’s internal buffer)

e sockbuf::so_rcvbuf is used to retrieve and to set the size of the recv buffer (communi-

cation channel buffer not sockbuf’s internal buffer)

s.getopt(op, &opval, sizeof (opval), oplevel)

gets the option value of the sockbuf: :option op at the option level oplevel in opval.
It returns the actual size of the buffer opval used. The default value of the oplevel
is sockbuf: :sol_socket.

s.setopt(op, &opval, sizeof (opval), oplevel)

sets the option value of the sockbuf: :option op at the option level oplevel to opval.
The default value of the oplevel is sockbuf: :sol_socket.

s.gettype()

gets the socket type of s. The return type is sockbuf: :type.
s.clearerror()

gets and clears the error status of the socket.
s.debug(opval)

if opval is not -1, set the sockbuf::so_debug option value to opval. In any case,
return the old option value of sockbuf: :so_debug option. The default value of opval
is -1.

Chapter 2: sockbuf Class 11

s.reuseaddr(opval)
if opval is not -1, set the sockbuf: :so_reuseaddr option value to opval. In any case,
return the old option value of sockbuf::so_reuseaddr option. The default value of
opval is -1.

s.dontroute(opval)
if opval is not -1, set the sockbuf: :so_dontroute option value to opval. In any case,
return the old option value of sockbuf::so_dontroute option. The default value of
opval is -1.

s.oobinline(opval)
if opval is not -1, set the sockbuf: :s0_oobinline option value to opval. In any case,
return the old option value of sockbuf::so_oobinline option. The default value of
opval is -1.

s.broadcast (opval)
if opval is not -1, set the sockbuf: :so0_broadcast option value to opval. In any case,
return the old option value of sockbuf::so_broadcast option. The default value of
opval is -1.

s.keepalive(opval)
if opval is not -1, set the sockbuf: :s0_keepalive option value to opval. In any case,
return the old option value of sockbuf::so_keepalive option. The default value of
opval is -1.

s.sendbufsz(opval)
if opval is not -1, set the new send buffer size to opval. In any case, return the old
buffer size of the send buffer. The default value of opval is -1.

s.recvbufsz(opval)
if opval is not -1, set the new recv buffer size to opval. In any case, return the old
buffer size of the recv buffer. The default value of opval is -1.

s.linger(tim)
if tim is positive, set the linger time to tim seconds. If tim is 0, set the linger off.
In any case, return the old linger time if it was set earlier. Otherwise return -1. The
default value of tim is -1.

2.6 Time Outs While Reading and Writing

Time outs are very useful in handling data of unknown sizes and formats while reading and
writing. For example, how does one communicate with a socket that sends chunks of data of
unknown size and format? If only sockbuf : :readis used without time out, it will block indefinitely.

In such cases, time out facility is the only answer.

Chapter 2: sockbuf Class 12

The following idiom is recommended. See Chapter 15 [Pitfalls], page 48 for a complete example.

int old_tmo = s.recvtimeout (2) // set time out (2 seconds here)
for (;;) { // read or write

char buf[256];

int rval = s.read (buf, 256);

if (rval == || rval == EOF) break;

// process buf here

¥

s.recvtimeout (old_tmo); // reset time out

In what follows,

— 8 is a sockbuf object

— wp is waiting period in seconds

s.recvtimeout (wp)
sets the recv timeout to wp seconds. If wp is -1, it is a block and if wp is 0, it is a poll.

It affects all read functions. If the socket is not read ready within wp seconds, the read
call will return 0. It also affects sockbuf: :underflow. sockbuf: :underflow will not
set the _S_EOF_SEEN flag if it is returning EOF because of timeout.

sockbuf: :recvtimeout returns the old recv timeout value.
s.sendtimeout (wp)
sets the send timeout to wp seconds. If wp is -1, it is a block and if wp is 0, it is a poll.

It affects all write functions. If the socket is not write ready within wp seconds, the
write call will return 0.

sockbuf: :sendtimeout returns the old send timeout value.

Chapter 3: sockAddr Class 13

3 sockAddr Class

Class sockAddr is an abstract base class for all socket address classes. That is, domain specific
socket address classes are all derived from sockAddr class.

Note: sockAddr is not spelled sockaddr in order to prevent name clash with struct
sockaddr declared in ‘<sys/socket.h>’.

Non-abstract derived classes must have definitions for the following functions.

sockAddr: :operator void* ()

should simply return this.
sockAddr: :size()

should return sizeof (*this). The return type is int.
sockAddr: :family ()

should return address family (domain name) of the socket address. The return type is

int

Chapter 4: sockinetbuf Class 14

4 sockinetbuf Class

sockinetbuf class is derived from sockbuf class and inherits most of the public functions of
sockbuf. See Chapter 2 [sockbuf Class], page 4, for more information on sockbuf. In addition, it
provides methods for getting sockinetaddr of local and peer connections. See Chapter 5 [sockine-
taddr Class], page 19, for more information on sockinetaddr.

4.1 Methods

In what follows,

ty denotes the type of the socket connection and is of type sockbuf: :type
— proto denotes the protocol and is of type int

— s8i, ins are sockbuf objects and are in inet domain

— adr denotes an inet address in host byte order and is of type unsigned long
— serv denotes a service like "nntp" and is of type char*

— proto denotes a protocol like "tcp" and is of type char*

— thostname is of type char* and denotes the name of a host like "kelvin.acc.virginia.edu"
or "128.143.24.31".

— portno denotes a port in host byte order and is of type int

sockinetbuf ins(ty, proto)

Constructs a sockinetbuf object ins whose socket communication type is ty and
protocol is proto. proto defaults to 0.

sockinetbuf ins(si)
Constructs a sockinetbuf object ins which uses the same socket as si uses.

ins = si performs the same function as sockbuf::operator=. See Chapter 2 [sockbuf Class],
page 4, for more details.

ins.open(ty, proto)

create a new sockinetbuf whose type and protocol are ty and proto respectively and
assign it to ins.

sockinetaddr sina = ins.localaddr()

returns the local inet address of the sockinetbuf object ins. The call will make sense
only after a call to either sockbuf::bind or sockbuf::connect.

Chapter 4: sockinetbuf Class 15

sockinetaddr sina = ins.peeraddr()

returns the peer inet address of the sockinetbuf object ins. The call will make sense

only after a call to sockbuf: :connect.
const char* hn = ins.localhost()

returns the local inet thostname of the sockinetbuf object ins. The call will make
sense only after a call to either sockbuf: :bind or sockbuf: :connect.

const char* hn = ins.peerhost()

returns the peer inet thostname of the sockinetbuf object ins. The call will make
sense only after a call to sockbuf: :connect.

int pn = ins.localport()

returns the local inet port number of the sockinetbuf object ins in host byte
order. The call will make sense only after a call to either sockbuf::bind or
sockbuf: :connect.

int pn = ins.peerport()
returns the peer inet port number of the sockinetbuf object ins in local host byte
order. The call will make sense only after a call to sockbuf: :connect.
ins.bind ()
binds ins to the default address INADDR_ANY and the default port.
ins.bind (adr, portno)
binds ins to the address adr and the port portno.
ins.bind (adr, serv, proto)

binds ins to the address, adr and the port corresponding to the service serv and the
protocol proto>.

ins.bind (thostname, portno)

binds ins to the address corresponding to the hostname thostname and the port

portno.
ins.bind (thostname, serv, proto)

binds ins to the address corresponding to the hostname thostname and the port cor-
responding to the service serv and the protocol proto>.

ins.connect (adr, portno)
connects ins to the address adr and the port portno.
ins.connect (adr, serv, proto)

connects ins to the address, adr and the port corresponding to the service serv and

the protocol proto>.
ins.connect (thostname, portno)

connects ins to the address corresponding to the hostname thostname and the port
portno.

Chapter 4: sockinetbuf Class 16

ins.connect (thostname, serv, proto)

connects ins to the address corresponding to the hostname thostname and the port

corresponding to the service serv and the protocol proto>.

4.2 inet Datagram Sockets

The following two programs illustrates how to use sockinetbuf class for datagram connection
in inet domain. tdinread.cc also shows how to use isockinet class and tdinwrite.cc shows

how to use osockinet class.

tdinread.cc

// reads data sent by tdinwrite.cc
#include <sockinet.h>

int main(int ac, charx* av)

{
isockinet 1is (sockbuf::sock_dgram);
is->bind();

cout << "localhost = " << so.localhost() << endl
<< "localport " << so.localport() << endl;

char buf[256] ;
int n;

is >> n;
cout << av[0] << ": ",
while(n--) {

is >> buf;

cout << buf <<’ 7;

¥

cout << endl;

return O;

tdinwrite.cc

// sends data to tdinread.cc

Chapter 4: sockinetbuf Class 17

#include <sockinetbuf.h>
#include <stdlib.h>

int main(int ac, charx* av)

{
if (ac < 3) {
cerr << "USAGE: " << av[0] << '" thostname port-number "
<< "data ... " << endl;
return 1;
}
osockinet os (sockbuf::sock_dgram);
os->connect (av[1], atoi(av[2]));
cout << "local: " << so.localport() << ’
<< go.localhost() << endl
<< "peer: " << so.peerport() << ’?
<< so.peerhost() << endl;
0os << ac-3; av += 3;
while(*av) os << *av++ << 2 7
os << endl;
return O;
}

4.3 inet Stream Sockets

The following two programs illustrates the use of sockinetbuf class for stream connection in

inet domain. It also shows how to use iosockinet class.

tsinread.cc

// receives strings from tsinwrite.cc and sends the strlen
// of each string back to tsinwrite.cc
#include <sockinet.h>

int main()

{

sockinetbuf si(sockbuf::sock_stream);
si.bind();

cout << si.localhost() << ’ ? << si.localport() << endl;

Chapter 4: sockinetbuf Class

si.listen();

iosockinet s = si.accept();
char buf [1024] ;

while (s »>> buf) {
cout << buf <<’ 7;
s << ::strlen(buf) << endl;

}
cout << endl;
return O;
}
tsinwrite.cc

// sends strings to tsinread.cc and gets back their length
// usage: tsinwrite hostname portno

// see the output of tsinread for what hostname and portno to use
#include <sockinet.h>
#include <stdlib.h>

int main(int ac, charx* av)

{
iosockinet sio (sockbuf::sock_stream);
sio->connect (av[1], atoi (av[2]));

sio << "Hello! This is a test\n" << flush;

// terminate the while loop in tsinread.cc
si.shutdown(sockbuf::shut_write);

int len;
while (s >> len) cout << len << ’ 7;
cout << endl;

return O;

Chapter 5: sockinetaddr Class 19

5 sockinetaddr Class

Class sockinetaddr is derived from sockAddr declared in <sockstream.h> and from sockaddr_in
declared in <netinet/in.h>. Always use a sockinetaddr object for an address with inet domain
of sockets. See Section 2.4 [Connection Establishment], page 9.

In what follows,

— adr denotes an inet address in host byte order and is of type unsigned long
— serv denotes a service like "nntp" and is of type char*
— proto denotes a protocol like "tcp" and is of type char*

— thostname is of type char* and denotes the name of a host like "kelvin.acc.virginia.edu"
or "128.143.24.31".

— portno denotes a port in host byte order and is of type int

sockinetaddr sina

Constructs a sockinetaddr object sina with default address INADDR_ANY and de-
fault port number 0.

sockinetaddr sina(adr, portno)

Constructs a sockinetaddr object sina setting inet address to adr and the port num-
ber to portno. portno defaults to 0.

sockinetaddr sina(adr, serv, proto)

Constructs a sockinetaddr object sina setting inet address to adr and the port num-
ber corresponding to the service serv and the protocol proto. The protocol defaults
to "tep'.

sockinetaddr sina(thostname, portno)

Constructs a sockinetaddr object sina setting inet address to the address of
thostname and the port number to portno. portno defaults to 0.

sockinetaddr sina(thostname, serv, proto)

Constructs a sockinetaddr object sina setting inet address to the address of
thostname and the port number corresponding to the service serv and the proto-
col proto. The protocol defaults to "tcp".

void* a = sina
returns the address of the sockaddr_in part of sockinetaddr object sina as void*.
int sz = sina.size()

returns the sizeof sockaddr_in part of sockinetaddr object sina.

Chapter 5: sockinetaddr Class

int af =

int pn =

sina.family ()
returns sockinetbuf::af_inet if all is well.
sina.getport()

returns the port number of the sockinetaddr object sina in host byte order.

const char* hn = getthostname()

returns the host name of the sockinetaddr object sina.

20

Chapter 6: sockunixbuf Class 21

6 sockunixbufClass

sockunixbuf class is derived from sockbuf class declared in <sockstream.h> and hence, inherits
most of the public member functions of sockbuf. See Chapter 2 [sockbuf Class], page 4, for more

information on sockbuf.

6.1 Methods

In what follows,

— ty denotes the socket type and is of type sockbuf: :type
— proto denotes the protocol number and is of type int
— suis a sockbuf and must be in unix domain

— path is the unix path name like "/tmp/unix_socket"

sockunixbuf uns(ty, proto)

Constructs a sockunixbuf object uns with ty as its type and proto as its protocol

number. proto defaults to 0.
sockunixbuf uns = su
Constructs a sockunixbuf object uns which uses the same socket as is used by su.

uns = su sockunixbuf object uns closes its current socket if no other sockbuf is referring to it
and uses the socket that sockbuf object su is using.

uns.open(ty, proto)
create a sockunixbuf object with ty as its type and proto as its protocol and assign

the sockunixbuf object so created to *this. It returns this. proto defaults to 0.
uns.bind(path)

binds uns to the unix pathname path.
uns.connect (path)

connects uns to the unix pathname path.

6.2 unix Datagram Sockets

The following two programs illustrates how to use sockunixbuf class for datagram connection
in unix domain. tdunread.cc also shows how to use isockunix class and tdunwrite.cc shows
how to use osockunix class.

Chapter 6: sockunixbuf Class

tdunread.cc

// reads data sent by tdunwrite.cc
#include <sockunix.h>

#include <unistd.h>

#include <errno.h>

int main(int ac, charx* av)

{
if (ac '= 2) {
cerr << "USAGE: " << av[0] << '" socket_path_name\n";
return 1;

¥

// isockunix builds the sockunixbuf object
isockunix su (sockbuf::sock_dgram);

su->bind(av[1]);
cout << "Socket name = " << av[1] << endl;

if (chmod(av[1], 0777) == -1) {
perror ("chmod") ;
return 1;

¥

char buf[1024];
int i;
su >> 1i;
cout << av[0] << ": " << i << " strings: ";
while (i--) {
su >> buf;
cout << buf << ’ ’;
}

cout << endl;

unlink(av[1]);
return O;

tdunwrite.cc

// sends data to tdunread.cc
#include <sockunix.h>

int main(int ac, charx* av)

{

22

Chapter 6: sockunixbuf Class 23

if (ac < 2) {
cerr << "USAGE: " << av[O0]
<< " socket_path_name data...\n";
return 1;

+
osockunix su (sockbuf::sock_dgram);
su->connect (av[1]);

su << ac <<’ 7,
while (*av) { su << av[i] << ? ?; av++; }
su << endl;

return O;

6.3 unix Stream Sockets

The following two programs illustrates how to use sockunixbuf class for stream connection in

unix domain. It also shows how to use iosockunix class.

tsunread.cc

// exchanges char strings with tsunwrite.cc
#include <sockunix.h>

#include <unistd.h>

#include <errno.h>

int main(int ac, charx* av)

{
if (ac '= 2) {
cerr << "USAGE: " << av[0] << '" socket_path_name\n";
return 1;

¥

sockunixbuf su(sockbuf::sock_stream);
su.bind(av [1]1);

cout << "Socket name = " << av[1] << endl;
if (chmod(av[1], 0777) == -1) {

perror ("chmod") ;
return 1;

Chapter 6: sockunixbuf Class

}
su.listen(3);

iosockunix ioput = su.accept ();
char buf [1024] ;

ioput << av[0] << ’ ? << av[1] << endl;

while (ioput >> buf) cout << av[0] << ":

unlink(av[1]);
return O;

tsunwrite.cc

// exchanges char strings with tsunread.cc
#include <sockunix.h>

int main(int ac, charx* av)
{
if (ac < 2) {
cerr << "USAGE: " << av[O0]
<< " socket_path_name data..
return 1;

¥

iosockunix oput (sockbuf::sock_stream);
oput->connect (av [1]);

char buf[128];

oput >> buf;

cout << buf << ’ ’;
oput >> buf;

cout << buf << endl;

while (*av) oput << *av++ << 7 7
oput << endl;

return O;

" << buf << endl;

.\nn;

24

Chapter 7: sockunixaddr Class 25

7 sockunixaddr Class

Class sockunixaddr is derived from class sockAddr declared in <sockstream.h> and from struct
sockaddr_un declared in <sys/un.h>. Always use sockunixaddr objects for addresses with unix

domain of sockets. See Section 2.4 [Connection Establishment], page 9.
In what follows,
— path is the unix path name like "/tmp/unix_socket"

sockunixaddr suna(path)
Constructs a sockunixaddr object suna with path as the unix path name.
void* a = suna
returns the address of the sockaddr_un part of sockunixaddr object suna as void*.

int sz = suna.size()

returns the sizeof sockaddr_un part of sockunixaddr object suna.

int af = suna.family()

returns sockunixbuf::af_unix if all is well.

Chapter 8: sockstream Classes 26

8 sockstream Classes

sockstream classes are designed in such a way that they provide the same interface as their
stream counterparts do. We have isockstream derived from istream and osockstream derived

from ostream. We also have iosockstream which is derived from iostream.

Each domain also has its own set of stream classes. For example, unix domain has isockunix,
osockunix, and iosockunix derived from isockstream, osockstream, and iosockstream respec-
tively. Similarly, inet domain has isockinet, osockinet, and iosockinet.

8.1 1osockstreams

8.1.1 i1sockstream Class

Since isockstream is publicly derived from istream, most of the public functions of istream

are also available in isockstream.

isockstream redefines rdbuf () defined in its virtual base class ios. Since, ios::rdbuf () is
not virtual, care must be taken to call the correct rdbuf () through a reference or a pointer to an

object of class isockstream.
In what follows,

— sb is a sockbuf object

— sbp is a pointer to a sockbuf object

isockstream is(sb)

Constructs an isockstream object is with sb as its sockbuf.
isockstream is(sbp)

Constructs an isockstream object is with *sbp as its sockbuf.
sbp = is.rdbuf ()

returns a pointer to the sockbuf of the isockstream object is.
isockstream: :operator -> ()

returns a pointer to the isockstream’s sockbuf so that the user can use isockstream

object as a sockbuf object.

Chapter 8: sockstream Classes 27

is->connect (sa); // same as is.rdbuf()->connect (sa);

8.1.2 osockstream Class

Since osockstream is publicly derived from ostream, most of the public functions of ostream

are also available in osockstream.

osockstream redefines rdbuf () defined in its virtual base class ios. Since, ios::rdbuf () is
not virtual, care must be taken to call the correct rdbuf () through a reference or a pointer to an

object of class osockstream.

In what follows,

— sb is a sockbuf object

— sbp is a pointer to a sockbuf object

osockstream os(sb)

Constructs an osockstream object os with sb as its sockbuf.
osockstream os (sbp)

Constructs an osockstream object os with *sbp as its sockbuf.
sbp = os.rdbuf ()

returns a pointer to the sockbuf of the osockstream object os.
osockstream: :operator -> ()

returns a pointer to the osockstream’s sockbuf so that the user can use osockstream

object as a sockbuf object.

os->connect (sa); // same as os.rdbuf()->connect (sa);

8.1.3 10sockstream Class

Since iosockstreamis publicly derived from iostream, most of the public functions of iostream

are also available in iosockstream.

iosockstream redefines rdbuf () defined in its virtual base class ios. Since, ios: :rdbuf () is
not virtual, care must be taken to call the correct rdbuf () through a reference or a pointer to an

object of class iosockstream.

Chapter 8: sockstream Classes 28

In what follows,

— sb is a sockbuf object

— sbp is a pointer to a sockbuf object

iosockstream io(sb)

Constructs an iosockstream object io with sb as its sockbuf.
iosockstream io(sbp)

Constructs an iosockstream object io with *sbp as its sockbuf.
sbp = io.rdbuf ()

returns a pointer to the sockbuf of the iosockstream object io.
iosockstream: :operator -> ()

returns a pointer to the iosockstream’s sockbuf so that the user can use iosockstream

object as a sockbuf object.

io->connect (sa); // same as io.rdbuf()->connect (sa);

8.2 1osockinet Stream Classes

We discus only isockinet class here. osockinet and iosockinet are similar and are left out.

However, they are covered in the examples that follow.

8.2.1 1sockinet

isockinet is used to handle interprocess communication in inet domain. It is derived from
isockstream class and it uses a sockinetbuf as its stream buffer. See Section 8.1.3 [iosock-
stream], page 27, for more details on isockstream. See Chapter 4 [sockinetbuf Class], page 14, for

information on sockinetbuf.
In what follows,

— ty is a sockbuf::type and must be one of sockbuf::sock_stream, sockbuf::sock_dgram,

sockbuf: :sock_raw, sockbuf: :sock_rdm, and sockbuf::sock_seqpacket
— proto denotes the protocol number and is of type int

— sb is a sockbuf object and must be in inet domain

Chapter 8: sockstream Classes 29

— sinp is a pointer to an object of sockinetbuf

isockinet is (ty, proto)

constructs an isockinet object is whose sockinetbuf buffer is of the type ty and
has the protocol number proto. The default protocol number is 0.

isockinet is (sb)
constructs a isockinet object is whose sockinetbuf is sb. sb must be in inet domain.
isockinet is (sinp)
constructs a isockinet object is whose sockinetbuf is sinp.
sinp = is.rdbuf ()
returns a pointer to the sockinetbuf of isockinet object is.
isockinet: :operator ->

returns sockinetbuf of sockinet so that the sockinet object acts as a smart pointer

to sockinetbuf.

is->localhost (); // same as is.rdbuf ()->localhost ();

8.2.2 iosockinet examples

The first pair of examples demonstrates datagram socket connections in the inet domain. First,
tdinread prints its local host and local port on stdout and waits for input in the connection.
tdinwrite is started with the local host and local port of tdinread as arguments. It sends the
string "How do ye do!" to tdinread which in turn reads the string and prints on its stdout.

// tdinread.cc
#include <sockinet.h>

int main ()

{
char buf[256];
isockinet is (sockbuf::sock_dgram);
is->bind ();

cout << is->localhost() << ’ ’ << is->localport() << endl;

is.getline (buf);
cout << buf << endl;

return O;

Chapter 8: sockstream Classes 30

// tdinwrite.cc--tdinwrite hostname portno
#include <sockinet.h>
#include <stdlib.h>

int main (int ac, charxx av)

{

osockinet os (sockbuf::sock_dgram);
os->connect (av[1], atoi(av[2]));
os << "How do ye do!'" << endl;
return O;

The next example communicates with an nntp server through a sockbuf: :sock_stream socket

connection in inet domain. After establishing a connection to the nntp server, it sends a "HELP"

command and gets back the HELP message before sending the "QUIT" command.

// tnntp.cc
#include <sockinet.h>

int main ()

{

char buf[1024];
iosockinet io (sockbuf::sock_stream);
io->connect ("murdoch.acc.virginia.edu", "nntp", "tcp");
io.getline (buf, 1024); cout << buf << endl;
io << "HELP\r\n'" << flush;
io.getline (buf, 1024); cout << buf << endl;
while (io.getline (buf, 1024))
if (buf[0] == .’ && buf[1] == ’\r’) break;
else if (buf[0] == ’.’ && buf[1] == ’.’) cout << buf+l << endl;
else cout << buf << endl;
io << "QUIT\r\n" << flush;
io.getline (buf, 1024); cout << buf << endl;
return O;

8.3 1osockunix Classes

We discuss only isockunix here. osockunix and iosockunix are similar.

Chapter 8: sockstream Classes 31

8.3.1 1sockunix class

isockunix is used to handle interprocess communication in unix domain. It is derived from
isockstream class and it uses a sockunixbuf as its stream buffer. See Section 8.1.3 [iosockstream],
page 27, for more details on isockstream. See Chapter 6 [sockunixbuf Class], page 21, for infor-

mation on sockunixbuf.
In what follows,

— ty is a sockbuf::type and must be one of sockbuf::sock_stream, sockbuf::sock_dgram,

sockbuf: :sock_raw, sockbuf: :sock_rdm, and sockbuf::sock_seqpacket
— proto denotes the protocol number and is of type int
— s8b is a sockbuf object and must be in unix domain

— sinp is a pointer to an object of sockunixbuf

isockunix is (ty, proto)
constructs an isockunix object is whose sockunixbuf buffer is of the type ty and
has the protocol number proto. The default protocol number is 0.

isockunix is (sb)
constructs a isockunix object is whose sockunixbuf is sb. sb must be in unix
domain.

isockunix is (sinp)
constructs a isockunix object is whose sockunixbuf is sinp.

sinp = is.rdbuf ()
returns a pointer to the sockunixbuf of isockunix object is.

isockunix: :operator ->
returns sockunixbuf of sockunix so that the sockunix object acts as a smart pointer
to sockunixbuf.

is->localhost (); // same as is.rdbuf ()->localhost ();

8.3.2 iosockunix examples

tsunread listens for connections. When tsunwrite requests connection, tsunread accepts it
and waits for input. tsunwrite sends the string "Hello!!'!" to tsunread. tsunread reads the string

sent by tsunwrite and prints on its stdout.

Chapter 8: sockstream Classes

// tsunread.cc
#include <sockunix.h>
#include <unistd.h>

int main ()

{

sockunixbuf sunb (sockbuf::sock_stream);

sunb.bind ("/tmp/socket+-");
sunb.listen (2);

isockunix is = sunb.accept ();
char buf[32];

is >> buf; cout << buf << endl;
unlink ("/tmp/socket+-");
return O;

// tsunwrite.cc
#include <sockunix.h>
int main ()

{

osockunix os (sockbuf::sock_stream);
os->connect ("/tmp/socket++");

os << "Hello!!!'\n" << flush;

return O;

32

Chapter 9: pipestream Classes 33

9 pipestream Classes

pipestream stream classes provide the services of the UNIX system calls pipe and socketpair
and the C library function popen. ipipestream, opipestream, and iopipestream are obtained by
simply deriving from isockstream, osockstream and iosockstream respectively. See Chapter 8

[sockstream Classes], page 26 for details.
In what follows,

— 1ipis an ipipestream object

— op is an opipestream object

— iopis an iopipestream object

— cmd is a char* denoting an executable like "wc"

— ty is of type sockbuf: :type indicating the type of the connection

— proto is an int denoting a protocol number

ipipestream ip(cmd)

construct an ipipestream object ip such that the output of the command cmd is

available as input through ip.
opipestream op(cmd)

construct an opipestream object op such that the input for the command cmd can be

send through op.
iopipestream iop(cmd)
construct an iopipestream object iop such that the input and the output to the

command cmd can be sent and received through iop.

iopipestream iop(ty, proto)
construct a iopipestream object iop whose socket is a socketpair of type ty with
protocol number proto. ty defaults to sockbuf: :sock_stream and proto defaults to
0. Object iop can be used either as a pipe or as a socketpair.

iop.pid O
return the process id of the child if the current process is the parent or return 0. If the
process has not forked yet, return -1.

iopipestream: :fork ()
fork() is a static function of class iopipestream. fork() forks the current process

and appropriately sets the cpid field of the iopipestream objects that have not forked
yet.

Chapter 9: pipestream Classes 34

9.1 pipestream as pipe
pipe is used to communicate between parent and child processes in the unix domain.

The following example illustrates how to use iopipestream class as a pipe. The parent sends
the string "I am the parent" to the child and receives the string "I am the child" from child. The
child, in turn, receives the string "I am the parent" from parent and sends the string "I am the
child" to the parent. Note the same iopipestream object is used for input and output in each

process.

#include <pipestream.h>

int main()

{
iopipestream p;
if (p.fork()) {
char buf[128];
p << "I am the parent\n" << flush;
cout << 'parent: ";
while(p >> buf)
cout << buf <<’ 7;
cout << endl;
Yelse {
char buf[128];
p-getline(buf, 127);
cout << "child: " << buf << endl;
p << "I am the child\n" << flush;
}
return O;
}

9.2 pipestream as socketpair

Like pipes, socketpairs also allow communication between parent and child processes. But
socketpairs are more flexible than pipes in the sense that they let the users choose the socket type

and protocol.

The following example illustrates the use of iopipestream class as a socketpair whose type is
sockbuf: :sock_dgram. The parent sends the string "I am the parent" to the child and receives the
string "I am the child" from the child. The child, in turn, receives and sends the strings "I am the
parent" and "I am the child" respectively from and to the parent. Note in the following example
that the same iopipestream object is used for both the input and the output in each process.

Chapter 9: pipestream Classes 35

#include <pipestream.h>

int main()

{

iopipestream p(sockbuf::sock_dgram) ;
if (iopipestream::fork()) {
char buf[128];
p << "I am the parent\n" << flush;
p-getline(buf, 127);
cout << 'parent: " << buf << endl;
Yelse {
char buf[128];
p-getline(buf, 127);
cout << "child: " << buf << endl;
p << "I am the child\n" << flush;
+

return O;

9.3 pipestream as popen

popen is used to call an executable and send inputs and outputs to that executable. For example,

the following example executes "/bin/date", gets its output, and prints it to stdout.

#include <pipestream.h>

int main ()

{

char buf[128];
ipipestream p("/bin/date");

p-getline (buf, 127);
cout << buf << endl;
return O;

Here is an example that prints "Hello World!!" on stdout. It uses opipestream object.

#include <pipestream.h>

int main ()

{

opipestream p("/bin/cat");

Chapter 9: pipestream Classes

p << "Hello World!'!'\n" << endl;
return O;

The following example illustrates the use of iopipestream for both input and output.

#include <pipestream.h>

int main()
{
char buf[128];
iopipestream p("lpc");
p << "help\nquit\n" << flush;
while (p.getline(buf, 127)) cout << buf << endl;
return O;

Chapter 10: Fork Class 37

10 Fork Class

You can effectively use the Fork wrapper class to create child processes. You can use the Fork
class, instead of directly using the system call fork (), if you desire the following:

e Avoid zombie processes
e Optionally kill child processes when the parent process terminates.

e Want to know the reason for abnormal termination of child processes.

In what follows,

— killchild is an integer.
— reason is an integer.
— signois a valid signal.

— fis a Fork object.

Fork £(killchild, reason)

constructs a Fork object £. The constructor creates a child process. When the parent
process terminates, it will kill the child process if ki11child is not 0. Otherwise, the
parent process will wait until all its child processes die. If reason is not 0, then it gives
the reason for a child process’s death on the stderr.

f.is_child ()

returns 1 if the current process is the child process following the fork in constructing
the Fork object £. Otherwise, return 0.

f.is_parent ()

returns 1 if the current process is the parent process following the fork in constructing
the Fork object £. Otherwise, return 0.

f.process_id ()

returns the process id of the child process, if the current process is the parent process.
Returns 0, if the current process is the child process. Returns -1, if fork failed.

Fork::suicide_signal (signo)
is a static function. Upon the reciept of the signal signo, the current process will kill
all its child processes created through Fork: :Fork(int, int) irrespective of the value

of the killchild flag used in the construction of the Fork objects. signo defaults to
SIGTERM signal.

Chapter 10: Fork Class 38

10.1 Fork Example

The following example illustrates the use of the Fork class to create child processes. First, we
set up SIGTERM signal handler to kill all the child processes, by callling Fork: :suicide_signal
(). Second, we create several child and grandchild processes.

You can kill the top most parent process and all its children by sending a SIGTERM signal to
the top most parent process.

// tfork.C
#include <iostream.h>
#include <Fork.h>

static void print (char* name, pid_t child)

{
if (child)
cerr << "Parent " << getppid () << ";
<< name << ’ ’ << getpid () << "; Child " << child << ";\n";
+

int main (int ac, charxx av)

{
Fork::suicide_signal (SIGTERM) ;

Fork a(0, 1);
print ("a", a.process_id ());

if (a.is_child) {
sleep (3000);
} else if (a.is_parent ()) {
Fork b (1, 1);
print ("b", b.process_id ());
{
Fork c¢ (b.is_parent (), 1);
if (b.is_child ())
print ("cchild", c.process_id ());
else
print ('"cparent', c.process_id ());
if (c.is_child) {
sleep (3000);
return O;
}
}
if (b.is_child) {
sleep (120);
return 0x8;

Chapter 10: Fork Class

return O;

39

Chapter 11: Class protocol 40

11 Class protocol

protocol class is the base class for all the other application protocol classes like echo, smtp,
etc. protocol is derived publicly from iosockstream. It uses protocolbuf class, a nested class of
protocol, as its stream buffer.

The protocol class is an abstract class and thus, you cannot instantiate an object of protocol.

11.1 Class protocol::protocolbuf

protocol: :protocolbuf class is publicly derived from sockinetbuf and thus, it inherits all
the latter’s public member functions. In addition, the protocolbuf defines the following member
functions.

In what follows,

— pis an object of a non-abstract class derived from protocolbuf.

— pname is the transport protocol name which is either protocol: :tcp or protocol: :udp.
— addr is an unsigned long denoting the valid address of a machine in host byte order.

— host is a char string denoting the name of a machine like "kelvin.seas.virginia.edu".

— portno is an int and denotes the port number in host byte order.

protocol: :protocolbuf: :protocolbuf (pname)

constructs protocolbuf object with the transport protocol set to pname.
p-protocol_name ()

returns the name of the transport protocol of p as a char string.
p.rfc_name ()

returns the name of the application protocol name of p as a char string. pro-
tocolbuf::rfc_name () is a pure virtual function; thus, any class derived from
protocol: :protocolbuf should provide a definition for protocolbuf: :rfc_name ().

p.-rfc_doc O)

returns the RFC document name of the application protocol of p as a char string.
protocolbuf::rfc_doc () is a pure virtual function; thus, any class derived from
protocol: :protocolbuf should provide a definition for protocolbuf: :rfc_doc ().

Chapter 11: Class protocol 41

p-serve_clients (portno)

p.bind ()

converts p into a server. Use the port specified in /etc/services for the application
if portno < 0. Use a default port if 0 <= portno <= 1024. Otherwise, use portno as
the port to accept clients requesting service. protocolbuf::serve_clients() is pure
virtual function; thus, any class derived from protocol: :protocolbuf should provide
a definition for protocolbuf::serve_clients().

Please do not change the meaning of portno when you derive your own class.

same as p.serve_clients (-1).

p.connect ()

connects to the local host’s server for the application. p acts as the client.

.connect (addr)

connects to the server running at the machine with address, addr. p acts as the client.

.connect (host)

connects to the server running at the machine, host. p acts as the client.

.connect (host, portno)

connects to the server servicing clients at portno at the machine, host. Unlike this
connect call, the other variants of connect uses the port specified in the /etc/services

file.

Chapter 12: Echo Class 42

12 Echo Class

The echo class implements RFC 862. An echo object, as a client, will get back what ever data
it sends to an echo server. Similarly, an echo object, as a server, will echo back the data it receives

from its client.

The echo class is derived from protocol class, and uses echo: :echobuf as its stream buffer.

echo: :echobuf is in turn is derived from protocol: :protcolbuf.
In what follows,

— e is a echo object.

— pname is a transport protocol name and must be either protocol: :tcp or protocol: :udp.

echo e (pname)
constructs the echo object, e with pname as its transport protocol name.
echo: :operator -> ()

an echo object is a smart pointer for the underlying echobuf.

12.0.1 tsecho.C

// echo server. Serves clients at port 4000.
#include <echo.h>
#include <stdlib.h>

int main ()

{
echo server (protocol::tcp);
server->serve_clients (4000);
return 1;

¥

12.0.2 tcecho.C

// echo client. Sends "mary had a litte lamb" to the server
#include <echo.h>
#include <stdlib.h>

Chapter 12: Echo Class

int main ()
{
echo e(protocol::tcp);
e->connect ("kelvin.seas.virginia.edu", 4000);
cout << e->rfc_name () << ’ ’ << e->rfc_doc () << endl;

e << "mary had a little lamb\r\n" << flush;

char buf [256];
e.getline (buf, 255);

cout << '"got back: " << buf << endl;
return O;

43

Chapter 13: SMTP Class 44

13 SMTP Class

The smtp class, which is derived from protocol class, implements RFC 821. It can be used

only as a client. Server function is not yet implemented.

smtp uses smtp: :smtpbuf as its underlying stream buffer. Also, like the protocol class, smtp
is a smart pointer class for it is smtp: :smtpbuf.

In what follows,

— s is an smtp object.

— sbis an smtp: :smtpbuf object.

— iois a pointer to an ostream.

— buf is a char buffer of length buflen.

— str, str0, stril, ... are all char strings.

smtp s (io)
constructs an smtp client, s. Any response the client gets from the server is sent to the

ostream, io.
sb.get_response ()

gets the server response and sends it to io of the smtpbuf.
sb.send_cmd (str0, strl, str2)

concatenates strings str0, strl, and str2 and sends the concatenated string to the
server before getting its response.

sb.send_buf (buf, buflen)
sends the contents of the buf to the server.

sb.helo ()

sb.help (str)

sb.quit O

sb.turn)

sb.rset ()

sb.noop)

sb.data ()

sb.vrfy (str)

sb.expn (str)

implements the respective smtp commands. See RFC 821 for the meaning of each.

Chapter 13: SMTP Class 45

sb.mail (str)

sends the mail command to the server. str is the the reverse path or the FROM

address.
sb.rcpt (str)

sends the recipient command to the server. str is the forward path or the TO address.
sb.data (buf, buflen)

sends the contents of the buffer, buf as the mail data to the recipient previously estab-
lished through smtpbuf: :rcpt() calls.

sb.data (filename)

sends the contents of the file, filename as the mail data to the recipient previously
established through smtpbuf::rcpt() calls.

13.0.1 tcsmtp.C

// smtp client.

// The president sends a message to gs4t@virginia.edu.
#include <smtp.h>

#include <stdio.h>

#include <pwd.h>

#include <unistd.h>

int main ()
{
smtp client (&cout);

// establish connection
client->connect ("fulton.seas.virginia.edu");
client->helo ();

// get help
client->help ();

// setup the FROM address
client->mail ("president@whitehouse.gov");

// setup the TO address
client->rcpt ("gs4t@virginia.edu");

// send the message

client->data ();

client << "Hi Sekar, I appoint you as the director of NASA\r\n" << flush;
client << " -Bill, Hill, and Chel\r\n" << flush;

cout << client; // get the server response.

Chapter 13: SMTP Class

// finally quit
client->quit ();

return O;

¥

46

Chapter 14: Error Handling 47

14 Error Handling

Each class in the Socket++ library uses error(const char*) member function to report any
errors that may occur during a system call. It first calls perror() to report the error message
for the errno set by the system call. It then calls sock_error (const char* nm, const char*

errmsg) where nm is the name of the class.

The sock_error() function simply prints the nm and the errmsg on the stderr.

Chapter 15: Pitfalls 48

15 Pitfalls

Deadlocks in datagram sockets are the most common mistakes that novices make. To allevi-
ate the problem, sockbuf class provides timeout facilities that can be used effectively to avoid

deadlocks.

Consider the following simple tsmtp example which sends the HELP command to a smtp server
and gets back the help message. Suppose it does not know the size of the help message nor the
format of the message. In such cases, the timeout facilities of sockbuf class provides the required
tools.

The example terminates the help message reception if the there is no input activity from the
smtp server for 10 seconds.

tsmtp.cc

#include <sockinet.h>

int main()
{

iosockinet sio(sockbuf: :sock_stream);
sio->connect("kelvin.seas.virginia.edu", "smtp", "tcp");

char buf[512];

sio.getline(buf, 511); cout << buf << endl;
sio << "HELO kelvin\n" << flush;
sio.getline(buf, 511); cout << buf << endl;

sio << "HELP\n" << flush;

// set the receive timeout to 10 seconds
int tmo = sio->recvtimeout(10);

while (sio.getline(buf, 511)) cout << buf << endl;

// if the above while loop terminated due to timeout

// clear the state of sio.

if ('sio->is_eof())

sio.clear();

sio->recvtimeout(tmo); // reset the receive timeout time

sio << "QUIT\n" << flush;
sio.getline(buf, 511); cout << buf << endl;

Chapter 15: Pitfalls

return O;

49

Index

Index

A

accepting connections.veevnieeeeeennnnee... 9

acknowledgments o 2

B

base address class............. 13

binding addresses o i 9

C

class 1sockinet L i 28
class 1sockunix.o oo 31
class sockbuf....... .. o 4
common mistakes....... o i 48
COMMECE . .ottt e 9
connection establishment. 9
Copyright. ... 1
copyright notice......... .. i 1

D

datagram inet i i 16

datagram Unix...........ccooiiiiiii i 21

E

echoclass. o 42
echo:techo...... ... o i i 42
echo::operator->......... 42
error handling i 47

F

flushing buffers 4
flushing output o i 8
fork classo 37
fork example.......... 38
Fork::Fork........ i i i 37
Fork::ischild.............. . o i i ... 37
Fork::isparentot 37
Fork::processid.........o, 37

Fork::suicidesignal............................. 37

50
G
getpeername (see sockinetbuf::peeraddr)....... 15
getsockname (see sockinetbuf::localaddr) 14
getsockopt 10
I
inet address class il 19
inet domain.covuutiei i 14
iopipestream::fork.......... oLl 33
iopipestream::iopipestream..................... 33
iopipestream::pid........ i il 33
1osockinet example. 17
iosockinet examples. i 29
iosockstream class o ool 27
iosockstream classes. o i 26
iosockstream::iosockstream..................... 28
iosockstream::operator->............. 28
iosockstream::rdbuf......... 28
1osockunix class. oo i i 30
1osockunix example 23
1osockunix examples i 31
ipipestream: :ipipestream........................ 33
isockinet class i 28
isockinet example......... i 16
isockinet::isockinet............ o oL 29
isockinet::operator->.......... 29
isockinet::rdbuf......... il 29
isockstream class......... ... o i 26
isockstream::isockstream............. 26
isockstream::operator->......... 26
isockstream::rdbuf......... ool 26
isockunix class.......... o i 31
isockunix example 21
isockunix::isockunix............. oo L 31
isockunix::operator=>.......... 31
isockunix::rdbuf......... il 31
L
Listening 9

Index

opipestream::opipestream........................ 33
option getting. ..ottt 9
option setting.o i 9
osockinet example 16
osockstream class.........ol 27
osockstream::operator—->.............. 27
osockstream::osockstream................ 27
ogsockstream::rdbuf........ il 27
osockunix example. 21
overview of socket++ il 3

PaPE . et 33
pipe example 34
pipestream classes 33
pipestream examples. 33
pitfalls. ... 48
POPEIL. .« ottt 33
popen example 35
protcolbuf::protocolmame....................... 40
protocol class.......... i 40
protocolbuf class. ... 40
protocolbuf::bind........ o il 41
protocolbuf::connect..........l 41
protocolbuf::protocolbuf................, 40
protocolbuf::rfcdoc........... L 40
protocolbuf::rfcmame............ 40
protocolbuf::serveclients...................... 41

R

read timeouts. i 11

S

SEtSOCKODT . .o 10
smtp class 44
SMEP:tSMEP.. .o 44
smtpbuf::getresponse............l 44
smtpbuf::sendbuf oo 44

smtpbuf::sendcmd oLl 44

51
sockAddr class. ... i 13
sockAddr::family........ il 13
sockAddr: :operator void*............, 13
sockAddr::size i 13
sockbuf class......... o 4
sockbuf constructors......... .. oo 4
sockbuf destructor oo il 5
sockbuf reading i 5
sockbuf writing o 5
sockbuf::"sockbuf......... ool 5
sockbuf::acceptl 9
sockbuf::bind........ il 9
sockbuf::broadcast.............. oL 11
sockbuf::clearerror.............. 10
sockbuf::close........... il 5
sockbuf::connect........o 9
sockbuf::debug........... ...l 10
sockbuf::doallocate............ oL 8
sockbuf::dontroute....... oL 11
sockbuf::flushoutput...................... 8
sockbuf::getopt...... ... 10
sockbuf::gettype.......... ...l 10
sockbuf::iseof il 6
sockbuf::is exceptionpending..................... 7
sockbuf::isopen......... il 5,6
sockbuf::isreadready............... il 7
sockbuf::iswriteready.............. 7
sockbuf::keepalive.............. L 11
sockbuf::linger.......... 11
sockbuf::listen.......... il 9
sockbuf::msgflag.................. 6,7
sockbuf::oobinline..............o .. 11
sockbuf::open........ il 5
sockbuf::operator=........... il 5
sockbuf::overflow................ 8
sockbuf::rcvbuf il 11
sockbuf::read........ il 7
sockbuf::recv... i 7
sockbuf::recvfrom.......... i 7
sockbuf::recvmsg............... ... 7
sockbuf::recvtimeout.......... 8, 12
sockbuf::reuseaddr............... oL 11
sockbuf::send........ il 6

Index

sockbuf::sendmsg............ ool 6
sockbuf::sendtimeout........... 8, 12
sockbuf::sendto.......... il 6
sockbuf::setopt......l 10
sockbuf::shutdown................. ... oo 5
sockbuf::shuthow........ i 5
sockbuf::sndbuf........ ool 11
sockbuf::sockbuf il 4
sockbuf::sync...... il 8
sockbuf::sysread 7
sockbuf::sysmrite....... il 6
sockbuf::type... il 4
sockbuf::underflow............. 8
sockbuf::write...... il 6
sockbuf::xsputn.......... ool 8
socket options 9
socketpair..... i 33
socketpair example. 34
sockinetaddr class.......... ..o oo 19
sockinetaddr::family............. 20
sockinetaddr::getportl 20
sockinetaddr: :getthostname..................... 20
sockinetaddr: :operator void* 19
sockinetaddr::size.........ol 19
sockinetaddr: :sockinetaddr..................... 19
sockinetbuf class........ o il 14
sockinetbuf dgram example 16
sockinetbuf stream example........................ 17
sockinetbuf::bind............ o 15
sockinetbuf::connect........... L 15
sockinetbuf::localaddr..................., 14
sockinetbuf::localhost.............. 15

sockinetbuf::localport............... 15

52
sockinetbuf::open........... ool 14
sockinetbuf::operator=.............. 14
sockinetbuf::peeraddr.............. L 15
sockinetbuf::peerhost.............. 15
sockinetbuf::peerport.........l 15
sockinetbuf: :sockinetbuf............ o 14
sockstream classes oo it 26
sockunixaddr class.......... .. o i 25
sockunixaddr::family................... 25
sockunixaddr::operator void* 25
sockunixaddr::size....... oo 25
sockunixaddr::sockunixaddr..................... 25
sockunixbuf class il 21
sockunixbuf example.......................... ... 23
sockunixbuf::bind...........o il 21
sockunixbuf::connect............ oL 21
sockunixbuf::open........... ... il 21
sockunixbuf::operator=.............. 21
sockunixbuf: :sockunixbuf............ ... o000 21
stream Ineto o i 17
SEream UNIX. ...ovnutttt ittt 23
T
timeout example. i 48
TIMEOULS . oo vttt 11
U
unix address class.......... . oo, 25
UNIX dOMaAIT « ¢ vttt e 21
%%
Wwrite timeouts. ... 11

Table of Contents

Socket++ Library Copyright Notice..................... 1
Acknowledgments 2
1 Overview of Socket++ Library 3
2 sockbuf Class...... ..o 4
2.1 COnStIUCTOTS oot ottt e 4

2.2 DSt rUCtOr oo 5

2.3 Reading and Writing 5

2.4 Establishing connections..........cooi i, 9

2.5 Getting and Setting Socket Optionsc.ociiiiiiiiii .. 9

2.6 Time Outs While Reading and Writingoo... 11

3 sockAddr Class...........o .. 13
4 sockinetbuf Class............o .. 14
4.1 Methods . oo 14

4.2 inet Datagram Sockets i i 16

4.3 Inet Stream SOCKets ...t e 17

5 sockinetaddr Class ..., 19
6 sockunixbuf Class 21
6.1 Methods ..o 21

6.2 unix Datagram Sockets......o i i 21

6.3 unix Stream Sockets ..ot e 23

7 sockunixaddr Class.. 25
8 sockstream Classes.......... ... 26
8.1 10SOCKSITCAIMS .\ vttt 26

8.1.1 isockstream Class ...ovviiiniii 26

8.1.2 osockstream Class......coviiiiii i 27

8.1.3 iosockstream Classoviiiiniin i 27

8.2 iosockinet Stream Classescoiiiiii i 28

8.2.1 dsockinet 28

8.2.2 iosockinet examples i i 29

8.3 dosockunix Classes.t e 30

8.3.1 dsockunix class ... i 31

8.3.2 iosockunix examples. i 31

9 pipestream Classes.................................. 33
9.1 PIPESITEAIM AS PIPE « v vt ettt ettt et et 34

9.2 pipestream as socketpairol i 34

9.3 pipestream as POPeI ..ottt ittt 35

10 Fork Class...........cooiiiiiiiiii i 37
10.1 Fork Example.o 38

11 Class protocol............., 40
11.1 Class protocol::protocolbuf oo o i 40

12 EchoClass............ ... i 42
12.0.1 tsecho.C ..o 42

12.0.2 teecho.C oo 42

13 SMTP Class........ooiiiiiii i 44
13.0.1 tesmtp.C o 45

14 Error Handling..................................... 47
15 Pitfalls. ... 48

ii

