
1

Hashing - 2

Designing Hash Tables
Sections 5.3, 5.4, 5.4, 5.6

Designing a hash table

 Hash function: establishing a key with an
indexed location in a hash table.

 Index = hash(key) % table_size;

 Resolve conflicts:
 Need to handle multiple keys that may be mapped to

the same index.
 Two representative solutions

 Linear probe open addressing (will discuss more later)
 Chaining with separate lists.

Separate Chaining

 Each table entry
stores a list of items

 So we don’t need to
worry about multiple
keys mapped to the
same entry.

Separate Chaining (contd.)

Type Declaration for
Separate Chaining
Hash Table

Separate Chaining (contd.) Separate Chaining (contd.)

2

Separate Chaining (contd.) Separate Chaining (contd.)

Hash Tables Without Chaining

Try to avoid buckets with separate lists

How  use Probing Hash Tables
If collision occurs, try another cell in the hash

table.
More formally, try cells h0(x), h1(x), h2(x),

h3(x)… in succession until a free cell is found.
hi(x) = (hash(x) + f(i))
And f(0) = 0

Insert(k,x) // assume unique keys
1. index = hash(key) % table_size;
2. if (table[index]== NULL)

table[index]=
new key_value_pair(key, x);

3. Else {
• index++;
• index = index % table_size;
• goto 2;
}

Linear Probing: f(i) = i

 Search (key)
1. Index = hash(key) % table_size;

2. If (table[index]==NULL)
return –1; // Item not found

3. Else if (table[index].key == key)
return index;

4. Else {

• Index ++;

• index = index % table_size;

• goto 2;

5. }

Linear Probing: Search Linear Probing Example

Insert 89, 18, 49, 58, 69

3

Linear Probing: Delete

Can be tricky ...
How to maintain the consistency of the

hash table
What is the simplest deletion strategy you

can think of?

Quadratic Probing
f(i) = i2

Double Hashing

f(i) = i*hash2(x)
E.g.: hash2(x) = 7 – (x % 7)

What if hash2(x) == 0 for some x?

Rehashing

 Hash Table may get full
 No more insertions possible

 Hash table may get too full
 Insertions, deletions, search take longer time

 Solution: Rehash
 Build another table that is twice as big and has a new hash

function
 Move all elements from smaller table to bigger table

 Cost of Rehashing = O(N)
 But happens only when table is close to full
 Close to full = table is X percent full, where X is a tunable

parameter

Rehashing Example
After RehashingOriginal Hash Table

After Inserting 23

Rehashing Implementation

